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Abstract

We address the common problem of setting limits in the presence of uncer-
tainties on acceptances and backgrounds. We aim to investigate several different
approaches, but here describe just a Bayesian technique.

1 The problem

A very common statistical problem of relevance to Particle Physics is the extraction
of an upper limit on some hypothesised process, when there are uncertainties in quan-
tities such as the acceptance of the detector and/or the analysis procedure, the beam
intensity, the estimated background, etc. These are known in statistics as nuisance
parameters, or in Particle Physics as systematics. We assume that estimates of these
quantities are available from subsidiary measurements.

To specify the problem in more detail, we assume that we are performing a counting
experiment in which we observe n counts, and that the acceptance has been estimated
as ε0 ± σε and the background as b0 ± σb. For a signal rate s, n is Poisson distributed
with mean sε + b. Here ε contains factors like the intensity of the accelerator beam(s),
the running time, various efficiencies, etc. It is constrained to be non-negative, but can
be larger than unity.

We aim to study and compare different approaches to this problem. In general we
are interested in seeing:

• Narrow intervals or low upper limits can provide tighter rejection of incorrect
values, but empty or very short intervals—intervals with very small Bayesian
credibility—are undesirable. Although such intervals may formally enjoy fre-
quentist coverage, they simply lack a kind of conditional plausibility: given the
type of measurement we are making, the resolution of the apparatus, etc., it is
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very unlikely that the true value of the parameter we are interested in lies in the
calculated interval.

We will also look at the mean interval length, even though it is not invariant
with respect to reparametrisations of the variable of interest e.g. 1/s or ln s, or
s2, etc.1

• Coverage properties. This is a measure of how often the limits that we deduce
would in fact include the true value of the parameter. This requires consideration
of an ensemble of experiments like the one we actually performed, and hence is
an essentially frequentist concept. Nevertheless, it can be applied to a Bayesian
technique.

Coverage is a property of the technique, and not of the particular limit deduced
from a given measurement. It can, however, vary with the true value of the
parameter, which is in general unknown in a real measurement.

Undercoverage (i.e. the probability of containing the true value is less than the
stated confidence level) is regarded by frequentists as a serious defect. Usually
coverage is required for all possible values of the physical parameter.2 In contrast,
overcoverage is permissible, but the larger intervals result in less stringent tests
of models that predict the value of the parameter. For measurements involving
quantised data (e.g. Poisson counting), most serious methods have coverage which
varies with the true value of the parameter of interest, and hence if undercoverage
is to be avoided, overcoverage is inevitable.

• Bias. In the context of interval selection, this means having a larger coverage
B(s′, strue) for an incorrect value of the parameter s′ than for the true value strue.
This needs plots of coverage versus s′ for different values of strue. For upper limits,
B(s′1, strue) ≥ B(s′2, strue) if s′1 is less than s′2, so methods are necessarily biassed
for low s′. Bias thus is not very interesting for upper limits. It will be discussed
in later notes dealing with 2-sided intervals.

Here we investigate a Bayesian technique. We will report on and compare with
other methods (e.g. Cousins–Highland, pure frequentist, profiled frequentist) in later
notes.

1The median upper limit is invariant with respect to monotonic reparametrisations, but is not
commonly used.

2The argument is that the parameter is unknown, and so we wish to have coverage, whatever its
value. This ensures that, if we repeat our specific experiment many times, we should include the
true value within our confidence ranges in (at least) the stated fraction of cases. This argument may,
however, be over-cautious. The location of the dips in a coverage plot like that of fig. 1 occur at values
which are not fixed in s, but which depend on the details of our experiment (such as the values of ε and
b). These details vary from experiment to experiment. Thus we could achieve ‘no undercoverage for
the ensemble of experiments measuring the parameter s’, even if the individual coverage plots did fall
below the nominal coverage occasionally. Thus in some sense ‘average coverage’ would be sufficient
(see for example reference [1]), although it is hard to quantify the exact meaning of ‘average’. It
should be stated that this is not the accepted position of most High Energy Physics frequentists.
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2 Reminder of Bayesian approach

Before dealing with the problem of extracting and studying the limits on s as deduced
from observing n events from a Poisson distribution with mean sε + b in the presence
of an uncertainty on ε, we recall the way the Bayesian approach works for the simpler
problem of a counting experiment with no background and with ε exactly known. Then
n is Poisson distributed with mean sε, and Bayes’ Theorem3

P (B|C) = P (C|B)P (B)/P (C) (1)

gives

p(s|n) =
P (n|s)π(s)∫
P (n|s)π(s) ds

(2)

where π(s) is the prior probability density for s; p(s|n) is the posterior probability
density function (p.d.f.) for s, given the observed n; and P (n|s) is the probability of
observing n, given s.

We assume a constant prior for s,4 and that P (n|s) is given by the Poisson

P (n|s) = e−sε(sε)n/n! (3)

Then5

p(s|n) = εe−sε(sε)n/n! (4)

The limit is now obtained by integrating this posterior p.d.f. for s until we achieve the
required fraction β of the total integral from zero to infinity. If β is 90%, the upper
limit su is given by ∫ su

0

p(s|n) ds = 0.9 (5)

β is termed the credible or Bayesian confidence level for the limit.
For different observed n, the upper limits are shown in the last two columns of

Table 1, for b = 0 and for b = 3 respectively. The Gaussian approximation for the case
b = 0, n = 20, would yield su ' 20 + 1.28

√
20 ' 25.7, which is roughly comparable to

the corresponding su = 27.0451 of the Table. For b = 0, it coincidentally turns out that,
for this particular example, the Bayesian upper limits are identical with those obtained
in a frequentist calculation with the Neyman construction and a simple ordering rule
(see later note on the frequentist approach to this problem). In general this is not so.
Other priors sometimes used for s are 1/

√
s [2] or 1/s [3]. Having a prior peaked at

smaller values of s in general results in tighter limits for a given observed n.

3We follow the common convention whereby lower case π’s denote prior p.d.f.’s, lower case p’s
denote other p.d.f.’s, upper case Π’s denote prior probabilities, and upper case P ’s denote other
probabilities. Equation (1) is true for probabilities, p.d.f.’s, or mixtures depending on whether B
and/or C are discrete or continuous variables.

4This is an assumption, not a necessity, and is in some ways unsatisfactory. (It is implausible,
cannot be normalised, and creates divergences for the posterior if used with a (truncated) Gaussian
prior for the acceptance ε.)

5It turns out that the sum over n of the discrete distribution (3) and the integral over s of the
continuous distribution (4) are both equal to unity. This means that the probability P (n|s) and the
probability density p(s|n) are correctly normalised.
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ε = 1± 0.1 ε = 1± 0
n b = 0 1 2 3 4 5 6 7 8 b = 0 3
0 2.3531 2.3531 2.3531 2.3531 2.3531 2.3531 2.3531 2.3531 2.3531 2.3026 2.3026
1 3.9868 3.3470 3.0620 2.9019 2.8000 2.7297 2.6783 2.6391 2.6083 3.8897 2.8389
2 5.4669 4.5520 3.9676 3.6026 3.3623 3.1953 3.0736 2.9816 2.9099 5.3223 3.5228
3 6.8745 5.8618 5.0463 4.4644 4.0571 3.7666 3.5534 3.3922 3.2671 6.6808 4.3624
4 8.2380 7.1964 6.2451 5.4751 4.8914 4.4569 4.1313 3.8832 3.6904 7.9936 5.3447
5 9.5714 8.5213 7.5063 6.6022 5.8579 5.2719 4.8180 4.4660 4.1904 9.2747 6.4371
6 10.8826 9.8288 8.7885 7.8047 6.9344 6.2066 5.6184 5.1499 4.7772 10.5321 7.5993
7 12.1766 11.1203 10.0703 9.0460 8.0904 7.2450 6.5289 5.9387 5.4586 11.7709 8.7958
8 13.4570 12.3984 11.3441 10.3014 9.2952 8.3635 7.5374 6.8300 6.2380 12.9947 10.0030
9 14.7261 13.6655 12.6085 11.5575 10.5247 9.5365 8.6250 7.8142 7.1136 14.2060 11.2085

10 15.9858 14.9233 13.8641 12.8090 11.7630 10.7415 9.7701 8.8758 8.0775 15.4066 12.4073
11 17.2375 16.1732 15.1121 14.0542 13.0017 11.9621 10.9525 9.9966 9.1170 16.5981 13.5983
12 18.4823 17.4163 16.3533 15.2934 14.2371 13.1881 12.1560 11.1582 10.2162 17.7816 14.7816
13 19.7210 18.6535 17.5887 16.5269 15.4682 14.4139 13.3692 12.3452 11.3588 18.9580 15.9580
14 20.9545 19.8854 18.8191 17.7554 16.6946 15.6373 14.5856 13.5459 12.5302 20.1280 17.1280
15 22.1832 21.1127 20.0448 18.9795 17.9169 16.8572 15.8014 14.7528 13.7187 21.2924 18.2924
16 23.4078 22.3359 21.2665 20.1996 19.1353 18.0737 17.0151 15.9612 14.9161 22.4516 19.4516
17 24.6286 23.5553 22.4845 21.4161 20.3502 19.2868 18.2261 17.1689 16.1172 23.6061 20.6061
18 25.8459 24.7714 23.6992 22.6294 21.5619 20.4969 19.4344 18.3747 17.3189 24.7563 21.7563
19 27.0601 25.9844 24.9109 23.8397 22.7708 21.7042 20.6400 19.5784 18.5198 25.9025 22.9025
20 28.2715 27.1946 26.1199 25.0474 23.9770 22.9090 21.8432 20.7799 19.7191 27.0451 24.0451

Table 1: Upper 90% limits for n observed events with b background and ε = 1 ± 0.1
(κ = 100 and m = 99). Also shown are limits for b = 0 and b = 3 with fixed ε = 1.

If the whole procedure is now repeated with a background b and a flat prior, the
upper limits not surprisingly decrease for increasing b at fixed n (except for the case n =
0 where the limits can trivially be seen to be independent of b). This is not inconsistent
with the fact that the mean expected limit for a series of measurements increases with
b, i.e. experiments with larger expected backgrounds have poorer sensitivity.

2.1 Coverage

Next we can investigate the frequentist coverage C(strue)
6 of this Bayesian approach.

That is, we can ask what the probability is, for a given value of strue, of our upper limit
being larger than strue, and hence being consistent with it. This is equivalent to adding
up the Poisson probabilities of eqn. (3) for those values of n for which su(n) ≥ strue i.e.

C(strue) =
∑

relevant n

e−strueε(strueε)
n/n! (6)

As strue increases through any of the values of su of the last two columns of Table 1,
the coverage drops sharply. The coverage is plotted in Fig. 1.

The calculation of C(strue) can be done as follows: The identity

f ′(x) = e−x

[
n−1∑
k=0

xk

k!
−

n∑
k=0

xk

k!

]
= −e−x xn

n!
for f(x) = e−x

n∑
k=0

xk

k!

6This is the coverage at s = strue when the Poisson variable is generated with s = strue. This
differs from B(s′, strue) where the coverage is checked at s = s′ when the generation value is strue.
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allows us to write (integrating −f ′(x))∫ strue

0

p(s|n) ds =
∫ strueε

0

e−x xn

n!
dx = 1− e−strueε

n∑
k=0

(strueε)k

k!

From this, it follows that “relevant n” is equivalent to any one of these inequalities:

su(n) ≥ strue ⇒
∫ su

0

p(s|n) ds ≥
∫ strue

0

p(s|n) ds ⇒ β ≥ 1− e−strueε
n∑

k=0

(strueε)k

k!

and our expression for the coverage becomes

C(strue) = 1−
∑
n=0

′
e−strueε (strueε)n

n!

where
∑′ means “sum until the next term would cause the sum to exceed 1− β”. This

result proves that C(strue) ≥ β for all values of strue in this simple example.

It is seen that the coverage starts at 100% for small strue. This is because even for
n = 0 the Bayesian upper limit will include strue, and this is even more so for larger n.

Bayesian methods are supposed to achieve average coverage. This means that when
the coverage is averaged over the parameter s, weighted by the prior in s, the result
should agree with the nominal value β i.e.∫

C(s) π(s) ds∫
π(s) ds

= β (7)

A proof of this theorem is given in the second appendix, section 7 of this note.
For a constant prior, the region at large s tends to dominate the average, while in

general we will be interested in the coverage at small s. Thus the ‘average coverage’
result is of academic rather than practical interest, especially for the case of a flat prior.
Indeed it is possible to have a situation where the average coverage is, say, 90%, while
the coverage as a function of s is always larger than or equal to 90%.

3 The actual problem

Our actual problem differs from the simple case of Section 2 in that
(a) we have a background b, assumed for the time being to be accurately known; and
(b) we have an acceptance ε estimated in a subsidiary experiment as ε0 ± σε.

What we are going to do is to use an extended form of Bayes’ Theorem to express
p(s, ε|n) in terms of P (n|s, ε) and the priors for s and ε. The relationship is7

p(s, ε|n) =
P (n|s, ε)π(s)π(ε)∫∫

P (n|s, ε)π(s)π(ε) ds dε
(8)

7 For the case where the probabilities have a frequency ratio interpretation, this is seen from the
mathematical identities

P (X and Y and Z) = N(X and Y and Z)
N(Z)

N(Z)
Ntot

= P (X, Y |Z) P (Z) and

P (X and Y and Z) = N(X and Y and Z)
N(X and Y )

N(X and Y )
Ntot

= P (Z|X, Y ) P (X, Y ).

So with X, Y and Z identified with s, ε and n respectively, and with the prior for s and ε
factorising into two separate priors for s and for ε, we obtain p(s, ε|n) P (n) = P (n|s, ε) π(s) π(ε).
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To obtain the posterior p.d.f. for s, we now integrate this over ε:

p(s|n) =

∫ ∞

0

p(s, ε|n) dε, (9)

and finally we use this to set a limit on s as in eqn. (5).
The coverage for this procedure needs to be calculated as a function of strue and

εtrue. The average coverage theorem of the previous section must be generalized to∫∫
C(s, ε)π(s)π(ε) ds dε∫∫

π(s)π(ε) ds dε
= β

3.1 Priors

To implement the above procedure we need priors for s and ε. As in the simple
example of Section 2, for simplicity we assume that the prior for s is constant. Again
it is interesting to look at the way the properties of this method change as other priors
for s are used.

We assume that the prior for ε is extracted from some subsidiary measurement
ε0 ± σε. We do not assume that this implies that our belief about εtrue is represented
by a Gaussian distribution centred on ε0, as this would give trouble with the lower
end of the Gaussian extending to negative ε. Instead, we specify some particular form
of the subsidiary experiment that provides information about ε, and then assume that
a Bayesian analysis of this yields a posterior p.d.f. for ε. Slightly confusingly, this
posterior from the subsidiary experiment is used as the prior for the application of
Bayes’ Theorem to extract the limit on s (see eqns. (8) and (9)). We aim to have this
posterior/prior for ε having zero probability density at ε = 0.

3.2 The subsidiary measurement

Somewhat arbitrarily, we assume that, for a true acceptance εtrue, the probability for
the measured value ε0 in the subsidiary experiment is given by a Poisson distribution

P (ε0|εtrue) = e−κεtrueκmεm
true/m! (10)

where ε0 = (m + 1)/κ, σ2
ε = (m + 1)/κ2 and κ is a scaling constant8. We interpret

this as the probability for ε0. This is discrete because the observable m is discrete, but
the allowed values become closely spaced for large κ. For small σε/ε (i.e. for large m),
these probabilities approximate to a narrow Gaussian (see fig. 2).

Given our choice of probability in eqn (10), the likelihood for the parameter ε, given
measured ε0, is

L(ε|ε0) = e−κεκmεm/m! (11)

This is the same function of ε and ε0 as eqn. (10), but now m is regarded as fixed, and
ε is the variable. The likelihood is a continuous function of ε. It is compared with a
Gaussian in fig 3.

8Here we define ε0 and σ2
ε as the mean and variance of the posterior p.d.f. of eqn (12).
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Finally in the Bayes approach, with the choice of a constant prior for ε, the posterior
probability density for ε after our subsidiary measurement is

dp

dε
∝ e−κεκmεm/m! (12)

which is obtained by multiplying the right-hand side of eqn (11) by unity. This pos-
terior probability density for ε will be used as our prior for ε in the next step of
deducing the limit for s.

4 Results

The details of the necessary analytical calculations9 are presented in the Appendix of
this note. In this section we investigate the behavior of the Bayesian limits in this
example, especially the shape of the frequentist coverage probability as a function of
strue.

4.1 Shape of the posterior

The posterior p.d.f. for s has the form

p(s|b, n)ds ∝
[∫ ∞

0

e−(εs+b)(εs + b)n

n!

κ(κε)me−κεdε

Γ(m + 1)

]
ds

where the likelihood, the prior for ε, the (constant) prior for s, and the marginalization
integral over ε are all prominently displayed.

The posterior probability density for s gives the complete summary of the outcome
of the measurement in the Bayesian approach. It is therefore important to understand
its shape before proceeding to use it to compute a limit (or extract a central value and
error-bars).

Figure 4 illustrates the shape of the posterior for s (i.e. marginalized over ε) in the
case of a nominal 10% uncertainty on ε, and an expectation of 3 background events.
Plots are shown for 1, 3, 5, and 10 observed events. The posterior evolves gracefully
from being strongly peaked at s = 0 to a roughly Gaussian shape that excludes the
neighborhood near s = 0 with high probability. Technically, the posterior would be
described as a mixture of n + 1 Beta distributions of the 2nd kind10, giving it a tail at
high s which is more extensive than that of a Gaussian.

4.2 Upper limits

In this note, our main goal is to obtain a Bayesian upper limit su from our observation
of n events. It is by integrating the posterior p.d.f. out to s = su that an upper limit is

9This example can be handled analytically. More complicated cases might require numerical inte-
gration, which can be done via numerical quadrature or Monte Carlo methods.

10The 2nd Beta distribution is also known as “Beta′” (i.e. “Beta prime”), “inverted Beta”, “Pearson
Type VI”, “Variance-Ratio”, “Gamma-Gamma”, “F”, “Snedecor”, “Fisher-Snedecor”. . . .
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calculated: a β = 90% upper limit is defined so that the integral of the posterior from
s = 0 to s = su is 0.9. The probability (in the Bayesian sense) of strue < su is then
exactly β.

Table 1 shows the upper limits (β = 0.9) for n = 0–20 observed events with b = 0–8
and ε = 1± 0.1. (Integer values of b are chosen for illustration purposes only; b can, of
course, take any real value ≥ 0.)

One notices that when n = 0, the limit is independent of the expected background b.
This is required in the Bayesian approach: we know that exactly zero background events
were produced (when no events at all were produced), and this knowledge of what did
happen makes what might have happened superfluous. An interesting corollary is, in
the case of no events observed, uncertainties in estimating the background rate are
of no consequence in the Bayesian approach, and must not contribute any systematic
uncertainty to the limit. This reasoning does not hold in the frequentist framework,
where what might have happened definitely does influence the limit.

For comparison, limits for fixed ε = 1 with b = 0 or b = 3 are also shown in Table 1.
It is interesting that these two columns start out equal at n = 0 and differ by almost
exactly 3 for n > 11. In contrast, the difference between the b = 0 and b = 3 columns
for ε = 1±0.1 is already greater than 3 at n = 6, and continues to grow as n increases;
it is not clear whether the difference approaches a finite value as n →∞. In any case,
the limits for ε = 1 exactly are all smaller than the corresponding limits for ε = 1±0.1,
as expected.

4.3 Coverage

The main quantity of interest in this subsection is the frequentist coverage probability
C as a function of strue (for fixed εtrue and b). Because both the main and the subsidiary
measurements involve observing a discrete number of events, the function C(strue) will
have many discontinuities. On the other hand, C(εtrue) will be continuous (for fixed
strue). The explanation of this effect is as follows:

The measured data are n events in the main measurement and m events in the
subsidiary measurement. For each observed outcome (n, m) there is a limit su(n, m).
This limit includes the effect of marginalization over ε.

All (n, m) with n ≥ 0 and m ≥ 0 are possible, and the probability P of observing
(n, m) can be calculated as the product of two Poissons. (It will depend on strue, εtrue,
. . . ) If we look at all the possible limits we can obtain,

{su(n, m)|n ≥ 0 and m ≥ 0}

and sort them in increasing su, the su are countably infinite in number and dense in the
same way that rational numbers are dense in the reals.

To compute the coverage as a function of strue, we simply add up all the probabilities
of obtaining (n, m) with su(n, m) ≥ strue:

C =
∑

(n,m)∈A

P (n, m) A = {(n, m)|strue ≤ su(n, m) and n ≥ 0 and m ≥ 0}

This sum is over a countably infinite number of terms. If we increase strue slightly to
strue + ds and recalculate the coverage, we have to drop all the terms

{(n, m)|strue ≤ su(n, m) ≤ strue + ds}
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from the previous sum (the P (n, m) for each term also changes continuously with strue,
but this is no problem). If there are M > 0 such terms, there are M discontinuities in
the coverage in the interval [strue, strue + ds], since P (n, m) for each of these is finite,
and we lose them one by one as we sweep across the interval [strue, strue + ds].

But it seems that, in general, we can always find a solution to strue ≤ su(n, m) ≤
strue + ds for finite ds by going out to larger and larger n and m. So, although the
discontinuity may be tiny, we can always find a finite discontinuity in any finite interval
of strue.

On the other hand, if we keep strue fixed and vary εtrue, we always sum over the same
set of (n, m), since the definition of A does not involve εtrue, and P (n, m) is continuous
in εtrue. So the coverage is continuous as a function of εtrue for strue fixed.

Plotting a curve that is discontinuous at every point is somewhat problematical.
The solution adopted here is to plot the coverage as straight line segments between
the discontinuities, ignoring any discontinuities with |∆C| < 10−4. Figure 5 shows
C(strue) for the case β = 90%, εtrue = 1, nominal 10% uncertainty of the subsidiary
measurement of ε, and b = 3. We observe that C(strue) > β in this range, and it is
not clear numerically whether C(strue) → β as strue →∞. The same conclusions hold
for Fig. 6, which illustrates the same situation with a 20% nominal uncertainty for the
ε-measurement.

Figure 7 shows C(εtrue) for β = 90%, strue = 10, κ = 100, and b = 3—continuous
as advertised. The shape of the curve is quite similar to that of Figs. 5 and 6, so it
seems that the coverage probability (with b fixed) is approximately a function of just
the product of εtrue and strue. This approximate rule is likely to fail in the limit as
εtrue → 0 and strue →∞, for example, but it seems to hold when εtrue and strue are at
least of the same order of magnitude.

When εtruestrue is small, of order 1 or less, the coverage is ∼100%, as in the simple
case of Fig. 1. Otherwise, the behavior of coverage in Figs. 5–7 is superior to that of
Fig. 1, which has a much larger amplitude of oscillation.

Another frequentist quantity that characterizes the performance of a limit scheme
is the sensitivity, defined as the mean of su. Figure 8 shows the sensitivity as a function
of strue for the case of Fig. 5; 〈su〉 is observed to be nearly linearly dependent on strue.
There is one complication here: when the subsidiary measurement observes m = 0
events, and the prior for s is flat, su = ∞. Since the Poisson probability of obtaining
m = 0 is always finite, 〈su〉 is consequently infinite. So we must exclude the m = 0
case from the definition of 〈su〉. (In Fig. 8 the probability of obtaining m = 0 is
e−100 ' 4× 10−44.)

4.4 Other priors for s

A weakness of the Bayesian approach is that there is no universally accepted method
to obtain a unique “non-informative” or “objective” prior p.d.f. Reference [2], for
example, states:

Put bluntly: data cannot ever speak entirely for themselves; every prior
specification has some informative posterior or predictive implications; and
“vague” is itself much too vague an idea to be useful. There is no “objective”
prior that represents ignorance.
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Nevertheless, Ref. [2] does derive a 1/
√

s “reference prior” for the simple Poisson case,
which is claimed to have “a minimal effect, relative to the data, on the final inference”.
This is to be considered a “default option when there are insufficient resources for
detailed elicitation of actual prior knowledge”.

Reference [3] attempts to discover the optimal form for prior ignorance by consid-
ering the behavior of the prior under reparameterizations. For the case in question,
the form 1/s clearly has the best properties in this respect.

We are using an s0 prior for this study, which seems to be the most popular choice,
but the Appendix works out the form of the posterior using an sα−1 prior, so we can
briefly here summarize the results for the 1/s and 1/

√
s cases:

The 1/s prior leads to an unnormalizable posterior for all observed n when b > 0.
The posterior becomes a δ-function at s = 0, su = 0 for any β, and the coverage is
consequently zero for all strue > 0. This clearly is a disaster.

The 1/
√

s prior results in a posterior p.d.f. qualitatively similar in shape to those
of Fig 4, except that the p.d.f. is always infinite at s = 0. For n � b, this produces an
extremely thin “spike” at s = 0, which has a negligible contribution to the integral of
the posterior p.d.f. A more significant difference (for frequentists) between the 1/

√
s

and the s0 case is that the coverage probability is significantly reduced: for the case
of Fig. 5 the 1/

√
s prior pushes the minimum coverage down to ∼0.87. So the 1/

√
s

prior leads to violation of the frequentist coverage requirement; it undercovers for some
values of strue.

From the practical point of view—trying to upset as few people as possible—the
s0 prior for the case considered in this note seems more universally acceptable than
the 1/

√
s prior, which is objectionable from a frequentist point of view. One might

also seek to further improve the coverage properties by adopting an intermediate prior.
For example, an s−0.25 prior would reduce the level of overcoverage obtained with
the s0 prior. How acceptable this approach would be within the Bayesian Statistical
community is an interesting question.

It should be noted that all the prior p.d.f.’s considered in this note are “improper
priors”—they cannot be correctly normalized: In the case of the s0 and 1/

√
s priors,

the integral from 0 to any value s0 is finite, while the integral from s0 to infinity is
infinite. The corresponding integrals of the 1/s prior are infinite on both sides for all
s0 > 0. Improper priors are dangerous but often useful; “improper posteriors” are
generally pathological. Extra care must be taken when employing improper priors to
verify the normalizability of the resulting posterior—when using a numerical method
to obtain the posterior, it is very easy to miss the fact that its integral is infinite.

4.5 Restrictions

We summarize here the restrictions forced on the priors for s and ε—see the Appendix
for the analytical causes. The discussion below assumes b > 0. The prior for s being
of the form sα−1, we must require α > 0, as discussed above.

As specified in this note, the prior for ε, being taken from the posterior from the
subsidiary measurement with a flat prior, has been given no freedom. Should the
subsidiary measurement observe m = 0 events, the posterior for s is not normalizable

10



when α ≥ 1: su = ∞ when m = 0 and α ≥ 1.
This behavior is due to a well known effect: the ε prior becomes κe−κε when m = 0,

which remains finite as ε → 0. All such cases11 yield su = ∞ when α ≥ 1; any positive
α < 1 cuts off the posterior at large s sufficiently rapidly to render it normalizable.
From this point of view, a 1/

√
s prior may seem preferable, but on the other hand,

having su = ∞ when m = 0 seems intuitively reasonable. (In general, we have su = ∞
for m ≤ α− 1, but α ≥ 2 are not popular choices.)

There is another approach possible to the gamma prior for ε: we may simply specify
by fiat the form of the prior as

p(ε|µ)dε =
κ(κε)µ−1e−κε

Γ(µ)
dε

where µ is no longer required to be an integer. In practice, one then might obtain
µ and κ from a subsidiary measurement whose result is approximated by the gamma
distribution. In such cases, one must require µ > α to keep the posterior normalizable.
Note that in this form, µ/κ is the mean of the ε prior, (µ− 1)/κ is the mode, and µ/κ2

is the variance. It is then important to obtain µ and κ in a consistent way from the
information supplied by the subsidiary measurement. If ε, for example, were estimated
by a maximum likelihood method, one would identify the estimate with (µ − 1)/κ
rather than µ/κ.

5 Conclusions

Results have been presented on the performance of a purely Bayesian approach to the
issue of setting upper limits on the rate of a process, when n events have been observed
in a situation where the expected background is b and where the efficiency/acceptance
factor ε ± σε has been determined in a subsidiary experiment. Plots of the expected
sensitivity of such a measurement and of the coverage of the upper limits are given. It
will be interesting to compare these with the corresponding plots for other methods of
extracting upper limits, to be given in future notes.

6 Appendix A—Analytical Details

Here we present the details of the analytical calculation of the posterior p.d.f. for s.
For generality, we work through the calculation with a sα−1 prior; a flat prior is then
the special case α = 1.

6.1 Posterior for s with ε and b fixed

We measure n events from a process with Poisson rate εs+b, and we want the Bayesian
posterior for s, given improper prior sα−1. We compute the posterior for fixed ε and b

11A Gaussian truncated at ε = 0 is the standard example.
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in this subsection; the calculation with our prior for ε follows in the next subsection.
We have

posterior: p(s|ε, b, n)ds =
1

Ns

e−εs(εs + b)nsα−1ds

where all factors not depending on s have already been absorbed into the normalization
constant Ns, which is defined by

Ns =

∫ ∞

0

e−εs(εs + b)nsα−1ds =
bn+α

εα

∫ ∞

0

e−buuα−1(1 + u)ndu (u = sε/b)

where we have performed the indicated change of variable.
Expanding (1 + u)n in powers of u using the binomial theorem, we get

(1 + u)n = n!
n∑

k=0

un−k

(n− k)!k!
⇒ Ns = n!ε−α

n∑
k=0

Γ(α + n− k)bk

(n− k)!k!

Recognizing this as of the general hypergeometric form, we write it as

Ns = ε−αΓ(α + n)

[
1 +

n

α + n− 1

b

1!
+

n(n− 1)

(α + n− 1)(α + n− 2)

b2

2!
+ · · ·

]
to make the hypergeometric nature more explicit. Using the modern notation[4]

falling factorial: zk ≡ Γ(z + 1)

Γ(z − k + 1)
= z(z − 1)(z − 2) · · · (z − k + 1)

this is expressed as

Ns = ε−αΓ(α + n)
n∑

k=0

nk

(α + n− 1)k

bk

k!
= ε−αΓ(α + n)M(−n, 1− n− α, b)

where M is the notation of [5] (M , a confluent hypergeometric function, is often written

1F1, and the relation given here is only valid for integer n ≥ 0.) Note that M(−n, 1−
n−α, b) is a polynomial of order n in b (for n a non-negative integer), and is related to
the Laguerre polynomials. When α = 1, we get M(−n,−n, b), which is related to the
Incomplete Gamma Function. When α = 0, we get M(−n, 1− n, b), which is infinite,
so we require that α > 0.

Our posterior probability density for fixed ε is then given by

p(s|ε, b, n)ds =
εαe−εs(εs + b)nsα−1

Γ(α + n)M(−n, 1− n− α, b)
ds

6.2 Posterior for ε of the subsidiary measurement

The subsidiary measurement observes an integer number of events m, Poisson dis-
tributed as:

P (m|ε) =
e−κε(κε)m

m!

12



where κ is real number (connecting the subsidiary measurement to the main measure-
ment) whose uncertainty is negligible, so κ can safely be treated as a fixed constant. κ
might be thought of, for example, as based on a cross section that is exactly calculable
by theory. There is negligible (i.e. zero) background in the subsidiary measurement.

The prior for ε is specified to be flat. The Bayesian posterior p.d.f. for ε is then

p(ε|m) =
κ(κε)me−κε

m!

(or Γ(m+1) instead of m! in the denominator if you prefer). This is known as a gamma
distribution.

The mean and rms of this posterior p.d.f. summarize the result of the subsidiary
measurement as:

ε =
m + 1

κ
±
√

m + 1

κ
= ε0 ± σε

Note that the observed data quantity in the subsidiary measurement is an integer m,
while the quantity being measured by the subsidiary measurement is a positive real
number ε.

6.3 Posterior for s with gamma prior for ε (b fixed)

Next we compute the joint posterior p(s, ε|b, n)dsdε using the sα−1 prior for s and our
gamma distribution prior (i.e. the posterior derived from the subsidiary measurement)
for ε ≥ 0

prior for ε: π(ε)dε =
(κε)µe−κε

Γ(µ)

dε

ε
µ = m + 1 = (ε0/σε)

2 κ = ε0/σε
2

where it is convenient to write µ for m + 1. We have for the joint posterior p.d.f.

p(s, ε|b, n)dsdε =
1

Ns,ε

π(ε)e−εs(εs + b)nsα−1dsdε

where

Ns,ε =

∫ ∞

0

∫ ∞

0

π(ε)e−εs(εs + b)nsα−1dsdε =

∫ ∞

0

π(ε)Nsdε

We calculated Ns above, so we have

Ns,ε = Γ(α + n)M(−n, 1− n− α, b)

∫ ∞

0

ε−απ(ε)dε

Ns,ε = καΓ(µ− α)Γ(α + n)M(−n, 1− n− α, b)/Γ(µ)

p(s, ε|b, n)dsdε =
κµ−αεµ−1sα−1(εs + b)ne−(s+κ)ε

Γ(µ− α)Γ(α + n)M(−n, 1− n− α, b)
dsdε

The marginalized posterior for s can then be expressed as

p(s|b, n)ds =

[∫ ∞

0

p(s, ε|b, n)dε

]
ds =

sα−1κµ−αIε

Γ(µ− α)Γ(α + n)M(−n, 1− n− α, b)
ds

13



where the integral Iε is given by

Iε =

∫ ∞

0

εµ−1e−(s+κ)ε(εs + b)ndε

The same procedure that was used for the normalization integral can be applied here,
producing

Iε =
bµ+n

sµ

∫ ∞

0

uµ−1e−b(1+κ/s)u(1 + u)ndu

Iε =
snn!

(s + κ)µ+n

n∑
k=0

Γ(µ + n− k)

(n− k)!k!

[
b(s + κ)

s

]k

Iε =
sn

(s + κ)µ+n
Γ(µ + n)M(−n, 1− n− µ, b(s + κ)/s)

p(s|b, n)ds =
Γ(µ + n)

Γ(µ− α)Γ(α + n)

sα+n−1κµ−α

(s + κ)µ+n

M(−n, 1− n− µ, b(s + κ)/s)

M(−n, 1− n− α, b)
ds

which has a particularly simple form when the background term is zero:

p(s|b = 0, n)ds =
Γ(µ + n)

Γ(µ− α)Γ(α + n)

sα+n−1κµ−α

(s + κ)µ+n
ds

a Beta distribution of the 2nd kind. Note that we must require µ > α > 0 to obtain a
normalizable posterior.

Our posterior p.d.f. for s with ε (and b) fixed is recovered exactly by taking the
limit of p(s|b, n) as σε → 0. This means that the limit of su as σε → 0 is identical to
the value of su when ε is known exactly. This property may seem obvious, but it is
violated by some frequentist methods of setting limits, so it is worth mentioning.

6.4 Calculating the limit

We need to integrate p(s|b, n) up to some limit su, which can be done analytically as
follows.∫ su

0

p(s|b, n)ds =
Γ(µ + n)

Γ(µ− α)Γ(α + n)

∫ su
su+κ

0

tα+n−1(1− t)µ−α−1M(−n, 1− n− µ, b/t)

M(−n, 1− n− α, b)
dt

where the substitution t = s
s+κ

has been performed. Re-expanding the polynomial M
and integrating term by term yields∫ su

0

p(s|b, n)ds =
n∑

k=0

Ix(α + n− k, µ− α)nk

(α + n− 1)k

bk

k!

/
n∑

k=0

nk

(α + n− 1)k

bk

k!

(
x =

su

su + κ

)
where Ix is the standard notation for the Incomplete Beta Function

incomplete beta function: Ix(q, r) ≡
Γ(q + r)

Γ(q)Γ(r)

∫ x

0

tq−1(1− t)r−1dt

which also satisfies the following recursion:

Ix(q, r) =
Γ(q + r)

Γ(q + 1)Γ(r)
xq(1− x)r + Ix(q + 1, r)
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6.5 Integer moments of the marginalized posterior

Using the same technique as above, we can calculate the jth moment of the posterior
p.d.f. as

〈sj〉 =

∫ ∞

0

sjp(s|b, n)ds =
(α + n)jκj

(µ− α− 1)j

M(−n, 1− n− α− j, b)

M(−n, 1− n− α, b)

where we utilize the notation[4]

rising factorial: zk ≡ Γ(z + k)

Γ(z)
= z(z + 1)(z + 2) · · · (z + k − 1)

The expression for the mean of the posterior when α = 1 can be simplified using
the identity

M(−n,−n− 1, b) =

(
1− b

n + 1

)
M(−n,−n, b) +

bn+1

(n + 1)!

obtaining

mean(α = 1) = 〈s〉|α=1 =
κ(n + 1− b)

µ− 2
+

κbn+1

(µ− 2)n!M(−n,−n, b)

Note that the 2nd term is very small when n � b.
The recurrence relation[5]

r(r − 1)M(q, r − 1, z) + r(1− r − z)M(q, r, z) + z(r − q)M(q, r + 1, z) = 0

leads to a recurrence relation between moments

〈sj〉 =
κ(α + n + j − 1− b)

µ− α− j
〈sj−1〉+

κ2b(α + j − 2)

(µ− α− j + 1)(µ− α− j)
〈sj−2〉

The special case α = 1 then yields

〈s2〉|α=1 =
κ2

(µ− 2)(µ− 3)

[
(2 + n− b)(1 + n− b) + b +

(2 + n− b)bn+1

n!M(−n,−n, b)

]
which leads to this approximation for the variance of the posterior

variance(α = 1) ' κ2(1 + n)

(µ− 2)(µ− 3)
+

κ2(1 + n− b)2

(µ− 2)2(µ− 3)
(n � b)

6.6 Posterior for s with gamma priors for ε and b

Here we very briefly consider the case where the background parameter b also acquires
an uncertainty. This case is more general than the fixed b case that is the main subject
of this note: The fixed b case will be the subject of additional studies employing
various popular frequentist techniques, with the goal of comparing their performance.
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We judge the more general case considered in this subsection to be more complicated
than necessary for the purpose of comparing the various methods, but it is instructive
to document the fact that the Bayesian method can easily handle the more general
case.

We assume a 2nd subsidiary measurement observing r events (Poisson, as was the
case for ε), which, when combined with a flat prior for b, results in a gamma posterior
for b of the form

p(b|r)db =
ω(ωb)re−ωb

r!
db

where ω is a calibration constant (analogous to κ in the subsidiary measurement for ε).
The posterior for b becomes the prior for b in the measurement of s. After deter-

mining the joint posterior p(s, ε, b|n) by using our priors for s, ε and b, we marginalize
with respect to ε and b, resulting in

p(s|n)ds =
Γ(µ + n)

Γ(µ− α)Γ(α + n)

sα+n−1κµ−α

(s + κ)µ+n

F (−n, ρ; 1− n− µ; (s + κ)/(sω))

F (−n, ρ; 1− n− α; 1/ω)
ds

where we write ρ = r + 1 for convenience, and F is the hypergeometric function[6]. As
long as n is a non-negative integer and α > 0, F (−n, ρ; 1 − n − α; x) is a polynomial
of order n in x (closely related to Jacobi polynomials).

This marginalized posterior for s can be then be integrated, with the result∫ su

0

p(s|n)ds =
n∑

k=0

Ix(α + n− k, µ− α)nkρk

(α + n− 1)k

ω−k

k!

/
n∑

k=0

nkρk

(α + n− 1)k

ω−k

k!

(
x =

su

su + κ

)
These two equations closely resemble the main results of sections 6.3 and 6.4: to

recover the fixed b results, simply substitute bω for ρ above, and take the limit ω →∞.

7 Appendix B—Average Coverage Theorem

In this appendix we prove that Bayesian credible intervals have average frequentist
coverage, where the average is calculated with respect to the prior density. We start
from the Bayesian posterior density:

p(s |n) =
P (n | s) π(s)∫∞

0
P (n | s) π(s) ds

. (13)

For a given observed value of n, a credibility-β Bayesian interval for s is any interval
[sL(n), sU(n)] that encloses a fraction β of the total area under the posterior density.
Such an interval must therefore satisfy:

β =

∫ sU(n)

sL(n)

p(s |n) ds, (14)

or, using the definition of the posterior density:∫ sU(n)

sL(n)

P (n | s) π(s) ds = β

∫ ∞

0

P (n | s) π(s) ds. (15)
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Now for coverage. Given a true value st of s, the coverage C(st) of [sL(n), sU(n)] is the
frequentist probability that st is included in that interval. We can write this as:

C(st) =
∑

P (n | st).

n such that:

sL(n)≤st≤sU(n)

(16)

Next we calculate the average coverage C, weighted by the prior π(s):

C =

∫ ∞

0

C(s) π(s) ds,

=

∫ ∞

0

∑
P (n | s) π(s) ds

n such that:

sL(n)≤s≤sU(n)

, using equation (16),

=
∞∑

n=0

∫ sU(n)

sL(n)

P (n | s) π(s) ds, interchanging12 integral and sum,

= β
∞∑

n=0

∫ ∞

0

P (n | s) π(s) ds, using equation (15),

= β

∫ ∞

0

∞∑
n=0

P (n | s) π(s) ds, interchanging sum and integral,

= β

∫ ∞

0

π(s) ds, by the normalization of P (n | s),

= β, by the normalization of π(s).

This completes the proof.

12This step is not trivial; some care is required to perform this correctly.
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Figure 1: Coverage as a function of the true signal rate s for Bayes 90% limits, for the
simple case of no background and no uncertainty on ε = 1.
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0.7 0.8 0.9 1.0 1.1 1.2 1.3
ε0

Figure 2: Comparison of our discrete probability for ε0 (shown as a histogram, see
eqn (10)) and Gaussian (continuous curve) for the case ε = 1± 0.1.
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Figure 3: Comparison of our likelihood (dashed, see eqn (11)) and Gaussian (solid) for
the case ε = 1± 0.1.
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Figure 4: Posterior densities p(s|b, n) vs s for n = 1, 3, 5, 10. In each case, b = 3 and
ε = 1± 0.1 (i.e. κ = 100 and m=99).
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Figure 5: Coverage of 90% upper limits as a function of strue for εtrue = 1, nominal 10%
uncertainty of the subsidiary measurement of ε, and b = 3 background expected.
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Figure 6: Coverage of 90% upper limits as a function of strue for εtrue = 1, nominal 20%
uncertainty of the subsidiary measurement of ε, and b = 3 background expected.
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Figure 7: Coverage of 90% upper limits as a function of εtrue for strue = 10, nominal
10% uncertainty of the subsidiary measurement of ε, and b = 3 background expected.
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β=0.90     εtrue=1     κ=100     b=3     

0 20 0

50
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Figure 8: Sensitivity of 90% upper limits as a function of strue for εtrue = 1, nominal
10% uncertainty of the subsidiary measurement of ε, and b = 3 background expected.
For reference, the sensitivity for σε = 0 is also given (dashed).
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